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A general class of unbiased Monte Carlo estimators for functional integrals is introduced. 
This class contains previously known unbiased estimators as well as some classical biased 
estimators improved with special correction terms. The new algorithm is applicable under 
weaker conditions on the functional integral. Numerical results of simulation studies are 
presented. The variance reduction problem in the infinite-dimensional space is considered. 
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1. INTRODUCTION 

Functional integration on the one hand (cf. [S, 11, 171) and Monte Carlo 
methods on the other hand (cf. [ 13, 16,4]) play an increasing role in quantum and 
statistical physics. Thus, the construction of effective Monte Carlo algorithms for 
the evaluation of functional integrals is of considerable interest (cf. [lS, 191). 

The purpose of this paper is to introduce a rather general class of unbiased 
estimators for certain functional integrals. This class contains the unbiased 
estimators proposed in [ZO] as well as some classical biased estimators (cf. [3]) 
improved with special correction terms. The new algorithm is applicable under 
weaker conditions on the functional integrals. 

We consider functional integrals of the form 

(i 

t 
I,(t,, x0, t, x) := E exp 4~ w(s)) ds 

kl 1 
, (1.1) 

where w is the d-dimensional Brownian bridge from x0 at the time to into x at the 
time t, and x0, x E Rd. The symbol E denotes the mathematical expectation. 

The function c: [to, t] x Rd + R is supposed to be such that the integral 
functional of the Wiener trajectory 

s 2 4~ w(s)) ds 
20 

is an as. finite random variable with a finite exponential moment (1.1). 
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Functional integrals of this kind are important because of their connection with 
Green’s function for certain partial differential equations (cf. the Feynman- 
formula). Various parameters of quantum-mechanical systems (like the lowest 
energy level) can be evaluated numerically with the help of the functional integral 
representation of Green’s function (cf. [6, lo]). 

Monte Carlo methods for the evaluation of functional integrals (1.1) have been 
investigated in many papers (cf. the extensive reference list in [20]). They can be 
described as follows. First the functional of a continuous path 

F(w) := exp J*,: c(s, w(s)) ds] 

is replaced by a functional q of a time-discrete trajectory co. The resulting error is 
called the systematic error of the algorithm: 

EF(w) = Ey(o) + systematic error. 

Then, the mathematical expectation Eq is evaluated by the empirical mean over 
independent samples (oi) of o, generated by means of a random number generator: 

Eq(w) = (l/N) $ ~(0~) + statistical error. 
j=l 

The random variable q is called an estimator for the functional integral (1.1). The 
estimator depends on various parameters like the probability distribution of o. 

Consequently, two main problems have to be considered in the theory of 
stochastic numerical algorithms for functional integrals: 

the approximation problem-to estimate the systematic error in dependence 
on the parameters ; 

the variance reduction problem-to reduce the statistical error, which depen 
on the variance of the estimator, by an appropriate choice of the parameters. 

An estimator is called unbiased if it is not connected with any systematic error, 
i.e., if Eq(o) = El;(w). Unbiased estimators are very convenient because of the 
simple error analysis. The statistical error can be estimated by means of confidence 
intervals during the process of computation. 

In Section 2 we introduce the basic ideas, leading to the construction of the new 
type of unbiased estimators, and formulate the main results. Section 3 contains 
some examples illustrating the rich variety of multi-step estimators. The proof of the 
theorems of Section 2 are collected in Section 4. A more detailed analysis of 
concrete estimators is performed in Section 5. Some numerical examples are given 
in Section 6. Section 7 contains some reflections about the multi-step estimation 
scheme from the point of view of importance sampling in the in~nite-dimensional 
space. 



338 WOLFGANG WAGNER 

2. MULTI-STEP ESTIMATORS; BASIC IDEAS AND RESULTS 

The estimators to be introduced are based on the following three ideas: 

- a measure substitution is performed in the functional integral (1.1 ), 
following the idea of the importance sampling procedure known from the tinite- 
dimensional case (cf. the comments in Section 7); 

- a mixed integration formula is derived for the transformed functional 
integral, using an idea by Fosdick [9]; 

-estimators proposed in [20] are used to estimate the inner functional 
integrals appearing in the mixed integration formula. 

First we need some notations. Consider the set 

where - cc < to < t < co. For any (sr , y,, s2, y2) E T, we introduce the measure 
m,(s,, yr, s2, y2) on the space of continuous vector functions {u: [sr, s2] --t Rd} 
generated by the corresponding conditional Wiener process subject to the 
conditions w(sr) = y1 and w(s2) = y2. 

Further we consider the set K of measurable functions c: [to, t] x Rd + R such 
that J;; c(s, v(s)) ds is measurable and a.s. finite with respect to the measure 
mo(sly yl, s2, ~~1, and Ml, yl, s2, u2) :=lexp(f:: c(s, 4s)) ds) dmo(sl, Y,, s2, y2) 
(o)<G for any (sly y1,s2, y2)~57 

For any c EK, we introduce the measure m,(s,, y,, s2, y2) given by its Radon- 
Nikodym derivative 

Sometimes we will use the notation 

(~1, ~13 ~29 ~21~ T, for appropriate functions g. Further, we denote 
~,,O(~l~ Yl, s29 Y2) =: &.h Yl, s29 Y2). 

The following theorem provides a natural interpretation of the measure m,. 

THEOREM 2.1. The measure m,(s,, yl, s2, y2) corresponds to a Markov process 
with the transition density 

Pc(%, 213 f42, zz/sz, Y2) 

:= PO(Ul, Zl, u2> z2/s2, Y2) 
Ic(Ul, Zl? u2, -72) 4(u2, z2, s2, Y2) 

Ic(Ul, Zl, s25 Y2) ' 
(2.2) 
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where p,,(.../s2, y2) denotes the transition density of the conditional Wiener process 
corresponding to mo(sl,y1,~2, y2), (x1, y1,s2, Y,)ET, slrSul<u2<s2, 21,~~~ 

It can be shown by simple calculations that the processes corresponding 
to the measures m,(s,, yi, s2, y2), (sr, yr, sl, y2) E T, are compatible in the 
following sense. Consider (si, y,, s2, y2), (si, yr, s3, y3)e T, s2<sj. Then the 
m,(s,, yi, s2, y&process is equivalent to the conditional m,(s,, yl, sg, y,)-process 
under the condition that it is in y2 at the time s2. Therefore, it is correct to speak 
about the m,-process without mentioning the index (si, yr, s2, y2) E T. 

The second theorem plays the major role in the construction of the new class of 
unbiased estimators. 

THEOREM 2.2. Consider c, cO E K, (tJ: to < tl < ... < t,, 1 := t, x, x0 E 
x,+1 := x. Then the following representation formula holds: 

ZAto, x0, t, x) = Zc,(to, x0, t, x) 

x fi zc-ccg,cg(ti, xi, ti+l3 xi+l) 
i=O 

x dx, ..‘dx,. 

Such representation theorems are called mixed integration formulas in the 
literature (cf. [2,9]). The usual way to apply them to the construction of numerical 
algorithms for the functional integral Z,(t,, x0: t, X) is to approximate the inner 
functional integrals (like Zc--,,cO(ti, xi, ti+ 1, xi+1 ) in Theorem 2.2) and to estimate 
the remaining finite-dimensional integral (cf. Example 2 in Section 3). 

Instead of this, we use unbiased estimators from [20] for the inner functional 
integrals zc-cg,cg(ti> Xi, ti+l, Xi+l ) and combine them with an estimator for 
finite-dimensional integral over (Rd)“. We suppose the functional inte 
Z,(s,, yi, s2, yJ, (si, yi, s2, y2) E T, to be known explicitly (cf. Example 1 in 
Section 3). According to Theorem 2.1, the transition density pcO of the 
generating the measure m, is also known explicitly. Consequently, the u 
estimators from [20] are applicable to functional integrals with respect to the 
measure m,. 

Let (~c~-cO,cO(sli yl,s2, y2)), (si, yI,s2, y2)eT, be a family of estimators such 
that 

The finite-dimensional integral over (Rd)” is evaluated by a standard one-point- 
estimator (cf., e.g., [S]). Let the distribution of (x,, . . . . x,) be given by a density 
qx,, . . . . x,) satisfying the condition P(x,, . . . . x,) > 0, if fl;~:r,” ~&t~, xi, ti, r, 
xi+ Jt, x) > 0. 

581/79/2-l 
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Now we define the estimator for the functional integral I,(&, x0, t, x) as 

x fi tc-q,qCti9 xi3 li+ 1, xi+ I), (2.4) 
i=O 

where the estimators <,-cO,cO(ti, xi, tifl, x~+~) are supposed to be independent, 
given the (x1, ,.., x,). 

The estimators ~C-cO,r,,(ti, xi, tifl, xi+ r) are given on random sequences 
(tj,j, xii), i=O, 1, . . . . n,j=O, 1, . . . . Ii, forming Markov chains with absorption. The 
chains start at (ti,o, xio) := (tj, Xi), i=O, 1, . . . . n. Their distribution parameters are 
the probability of absorption 

qm, Y), 

and the transition density 
4% 9 Yl ; s2, Y2), 

ts3 YL ts12 YlL ts2, Y2) E Cti, ti+ 1) x Rd* 

The random lengths of the chains are denoted by lj, i = 0, 1, . . . . n. We refer to [ZO] 
for more details (cf. also Example 3 in Section 3). 

The estimator (2.4) depends on the parameters co, (ti), appearing in the mixed 
integration formula (2.3), on the concrete form of the estimators 5, and on P, 
(q$), q”‘), defining the probability distribution of the discrete trajectory 
o = ((xi), (tii, x~,~)). Therefore, we use the term “the cl’ass of estimators (2.4)” as 
well as the term “the estimator (2.4).” 

The main property of the estimator (2.4) is the subject of the following theorem. 

THEOREM 2.3. Let the estimator 9 be given in the form (2.4). The condition 

Elrl < co (2.5) 

is necessary and sufficient for q to be unbiased, i.e., 

Er = Zc(to, xo, t, xl. 

A more detailed investigation of the estimator (2.4) will be performed in 
Section 5. 

3. EXAMPLES 

We consider some special cases (concrete values of the parameters) in order to 
demonstrate the rich variety of the class of estimators (2.4). 
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EXAMPLE 1. We suppose it = 0. The estimator (2.4) takes the form 

Y = Ic,(to, X0? t, xl LCrg,C&O~ x0, t, xl (?.I$ 

Thus (for co = 0), the whole variety of estimators proposed in [20] is contained in 
the class of multi-step estimators (2.4). We call the estimators of the form (3.1) 
one-step estimators. They have one more degree of freedom, compared with the 
estimators from [20]. This is the function co. 

The values I,.,(s~, yl, s2, y2), (si, yr, s2, y2) E T, are known explicitly in the case 
of quadratic co (cf. [ 17]), where the corresponding m,,-processes are Gaussian. We 
give the explicit formulas for the case 

Co(& Y) = -Q2Y2/2, yeR, a>O. 

The transition density pCO(s,, yi, s2, yz/t, x) is Gaussian with mean 

sinh(a( t - sJ) sinh(a(s, - si)) 
” sinh(a(t - sl)) +X sinh(a(t-s,)) 

and variance 

sinh(a(s, - sr)) sinh(a(t - sz)) 
sinh(a(t - sl)) ’ 

We call the corresponding process the harmonic oscillator process because of its 
relation to the quantum-mechanical harmonic oscillator having the potential cO. 
A similar example was considered in [7], where a special estimator of the type 
(3.1) also was used for the numerical solution of Schriidinger’s equation. 

Before turning to the next example, we remember a “shift procedure,” which was 
used in [ZO] for the purpose of variance reduction. It is based on the following 
simple transformation of the functional integrals, 

6c-co,co(ti3 xi9 ti+13 xi+l) 

= exp(di(ti+ 1 - ti)) x lc--rg-d,,co(fi> xi, ti+ 1, xi+lI, 

where di := d(ti, xi, tiil, x,+l), i=O, 1, . . . . n, and d is an appropriate measurable 
function. Replacing ~,~co,co(ti,~i, ti+l,xi+l) by exp(d,(t,,r- tj)) x ~c~CO~~l,CO(ti,Xi, 
ti+l,Xi+l f ) the estimator (2.4) can be modified, 

yI = Ic,(to, xo, t, x) lT=d “c$i(7x~r.~:‘;“j+ 1/t, x) 

n 

xew i: di(ti+ 1 
( 

-ti) 
i=O > 

f/ Sc--CO--di,cOtti3 xi3 li+l, xi+ 0. 
i=O 

P.2) 
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EXAMPLE 2. We suppose the parameter d to be 

di=((~-co)(t,,Xi)+(~-CCg)(ti+l,Xi+1))/2, (3.3) 

i = 0, 1, . ..) ~1. Then, the estimator (3.2) is closely related to well-known biased 
estimators based on Chorin’s approximation formula (cf. [3, 14, 1, 121). Suppose 
c0 = 0. Then, Chorin’s estimators are obtained from (3.2) by omitting the product 
rI1=0, 

vl = rI;Ld POCti, xi, ti+ 1 Y xi+ lit, x, 

Pbl 3 ..-, x,) 

xexp i (C(ti,Xi)+C(ti+l,XitI))(ti+l-ti)/2 . 
( 1 i=O 

(3.4) 

In Chorin’s approximation formula, the terms exp( (c( ti, xi) + c( ti+ 1, xi+ i))/2) are 
used as deterministic approximations of the inner functional integrals 

IcCti, xi9 ti+ 13 xi+ 1 ) = [ exp (j”” c(s, U(S)) dx) 
t, 

X dmo(ti, Xi, ti+ I 9 Xi+ l)(o), 

i = 0, 1, . . . . n. Thus, the multi-step estimator (3.2), with the parameter d given in 
(3.3), can be interpreted as Chorin’s estimator with a correction term that makes it 
unbiased. 

EXAMPLE 3. Finally, we consider a special choice of the distribution parameters 
P, (&I, q(‘)), and two concrete inner estimators 5: (cf. [20]). We use the parameters 

n-l 
w 1, . . . . xn) = lJ PcoCtiP xi7 ti+ 19 xi+ llt9 x)9 (3.5) 

i=O 

d?(s~ Y) = exp(-yh+ 1 --s)), Cs9 YjE Cti, ti+l)XRd9 (3.6) 

qci)ts19 Y1isZ> Y2)=P~o(~lr YIYs29 YJti+19xi+l) 

xexP(?(ti+l -s2)Y(exP(Y(ti+l -SI))-~)~ 
(3.7) 

ts19 YllE Cti2 ti+l)xR4 

(s2, Y,)E(Sl> ti+lb~d~ y > 0. 

The estimators are 

t”2 c - tt. xi, ti+12 xi+l)((ti,j9 x’ .)I co 4,co I’ kJ 

= ew(y(t,+ 1 -ti)) ye” ‘J ((C-co)(ti,j, Xi,j)-di) 
j=l 

(3.8) 
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and 

= 1 + jJ eXp(Y(ti,k- ti)) Y-k fj ((C-CO)(ti,js Xi,j)-di). (3.9) 
k=l j=l 

The trajectory CO = ((xi), (ti, j, xi, j)) defined by the parameters (3.5)-(3.7) is 
closely connected with the m,,-process. First, the random moments (ti, j) are to be 
generated with a distribution that can easily be obtained from (3.6), (3.7). Then, the 
random points (x,), (x~,~) are to be chosen independently of (ti,j) as the values of a 
trajectory of the m,,-process at the moments ( ti) and ( tL j), respectively. 

Thus, the parameters (3.5t(3.7) allow a rather clear interpretation of various 
classes of estimators. Biased estimators (cf. (3.4)) use the trajectory of the basic 
process at some deterministic moments (tJ. The systematic error can be avoided by 
using the trajectory of the basic process at random moments. The one-step 
estimators use this trajectory exclusively at random moments, the multi-step 
estimators, at some deterministic and some random moments. 

4. PROOFS OF THE THEOREMS OF SECTIONS 

First we prove a useful technical assertion. 

LEMMA 4.1. Consider c E K, (sl, yl, s2, y2) E T, and (u,), i= 0, 1, . . . . n + 1, such 
that sl=:ug<ul< ... <z&+1 :=s2. Let f and g be measurable functions such that 
the integral 

J := s f(v(u,), . ..) 44) exp 
( 

1" g(s, u(s), Q,), . . . . f44J ds 
s, 1 

x dm,(sl, YI > ~2, YZ)(V) 

exists. Then the equality 

x fi Ict”i, zi2 ui+l, Zi+l) zcc(sl, YlP s2, Y2)VI 
i=O 

xoiexp(~~+’ 
As, 4~1, ~1, . . . . z,) ds 

> 

Xdmc(Ut, Zi, ui+l, Zi+1)(u)dzl “‘dzn, 

holds with zO := y1 and z,,+~ := y2. 
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ProoJ First we substitute the measure m, by the measure m, according to (2.1): 

J=L(sl? Yl, s2> y2)-’ jf(n(%A .‘*P 4%)) 

x exp 
0 

s2 MS, u(s), UC%), . . . . 4%)) + 4% u(s))) ds 
s1 > 

Now we write the expectation with respect to the Wiener process as an integral 
over the conditional expectations with the condition w(ui) = zi, . . . . w(u,) = z,. It 
follows that 

w(ul) = zl, . . . . w(u,) = z, dz, . . . dz,. 

The factors inside the conditional expectation are independent. Consequently, we 
obtain 

x n PO(“j, zi, ui+ 12 zi+ Js2, YZ) 
i=O 

x fi j exp (11” MS, u(s), zl, . . . . 4 + CCC 4s))) ds) 
i=O / 

X dmo(ui, Zi, ui+ I 3 Zi+ I )(u)} dz, .‘.dz,. 

Substituting the measures mo(ui, zi, ui+ i, zi+ i), i = 0, 1, ,,., n, by the corresponding 
m,-measures, one obtains the assertion of the lemma. 

Now we are able to prove Theorem 2.1. 

Proof of Theorem 2.1. First we prove that pc satisfies the conditions of a 
Markov transition density. Lemma 4.1 with (A g, c, n) = (1, c, 0, 1) provides the 
equality 

(4.1) 
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which implies the normalization condition for p,(.../sz, y2). To prove the 
Chapman-Kolmogorov property we consider s1 g u1 < u2 < I.+ < sa, zr, z3 E Rd, and 
write down p&u 1, r, ug, z3/sZ, y2) according to its definition (2.2). Applying z 
formula (4.1) to Ic(ul, zl, ug, z3) we obtain 

Pct”l> zl~ u3~ z3/s2, y2) =pO(ul, zl, u3, Z3/S2, y2) 

X 
s PO(Ul,Zl> u25 Z2/~3,Z3~~c~~l, ZI> f&2, z2) 

Rd 

x Zc(%, z2, u3, -4 dz2. 

Now we use the property of conditional Markov transition densities 

POi”l, zI> u2, z2/“3, z3) = 
Po(U1, Zl, U2r zz/s2, y2) pduz, z2, Ug,Z3/§2, y2) 

PO(UlY Zl, ~3,Z3/J*, Y2) 

Finally we obtain the desired equality: 

PC(Ul? zl, u3> z3/s2~ Y2) = 
Zc(u3, z3, s29 Y2) 

ZCITc(Ul~Zl> $2, v2) 

X 
s Pcd%, Zl, u2, z2ls2, Y2) Po(% z2> u3, z3ls2, Y21 

Rd 

Cc 
J Pc(‘i, ‘1, u2, z2/s2, ~,)Pc(~,, Z2t u3, z3is2, y2) dz2a 

Rd 

It remains to show that pc(.../s2, y2) generates the finite-dimensional distributions 
of the m,(s,, yr, s2, y,)-process. We consider (ui): .sr =: uO < u1 < ... <a,+, :=s2, 
and a bounded measurable function j According to Lemma 4.1, we find 

s f(4Ul), ‘..> 4%)) ~%(SlY Yl> s2, Y2)(~) 

I 
n-1 

= 
(Rd)nf’(zl, . ..’ 

zn) n Pcd%? zi, ui+ i > Zif l/b Y2) 
i=. 

x fi zc(“i3 zi, ui+19 zi+l)/zc(sl~ Yl, s29 Y2) dzl “‘dzH 
i=O 

s n-1 = (Rd)nf(Zl, . ..’ 4 I-J Pc(Ui, zi, uj+ 1, Zif I/h, v2) dz, ... dz,. i=. 
Thus, Theorem 2.1 is established. 
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Now we prove the mixed integration formula. 

Proof of Theorem 2.2. Performing the transformation from the measure m, to 
the measure m,, we obtain 

Using (2.2), the assertion of Lemma 4.1 can be written in the form 

1 1 

n-l 

= (Rd)” f(Zl~ .-T z~z) IJo Pct”i9 zi3 ui+19 zi+l/s23 Y2) 

x fi 1 exp (s”‘” g(s, +), ~1, . . . . 4 ds) 
i=O % 

X dm,(ui, Zi, Ui+ I > Zi+ I )(u)} dz, ..-dz,. (4.4) 

In particular, with (f, g, c) = (1, c - cO, c,,), we obtain the formula 

n-1 

Lcrg,&l~ Yl> $2, y2)= s I-I WV i = 0 
ProCUi, zi3 *i+ 1, zi+ ds2, Y2) 

The assertion of Theorem 2.2 follows immediately from (4.3) and (4.5). 

Fosdick’s mixed integration formula [9] is obtained from Theorem 2.2 for c0 = 0. 
It remains to prove Theorem 2.3. 

Proof of Theorem 2.3. Condition (2.5) is necessary and sufficient for the 
existence of a finite mathematical expectation Eq. Suppose (2.5) to be fulfilled. 
Using simple properties of the conditional expectation, we obtain 

Ev = EE{rl(xi)) = Zc,,(to, xo, t, xl 

n-1 

X s I-I (RdY’ i = 0 
PcoCti9 xi9 ti+ 13 xi+ Ilt9 x) 

X fi E(tc--q,q(tt,Xi, ti+l,~i+l)/(Xi))dX~ *.‘dxrz. 
i=o 

The assertion follows immediately from Theorem 2.2. 
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5. FURTHER RESULTS ON MULTI-STEP ESTIMATORS 

Theorem 2.3 gives a general answer to the approximation problem. The multi- 
step estimator (2.4) is unbiased, if its mathematical expectation is finite (condition 
(2.5)). Now, we use the concrete form (3.2), (3.5)-(3.8) of the multi-step estimator 
in order to specify the condition (2.5). We look for a more explicit form of this 
condition in terms of the parameters of the estimator. 

PROPOSITION 5.1. Consider the estimator r] in the form (3.2), (3.5)-(3.8). Then 

Elrl =jexp (j~(l(c-co)( s, $s)) - ds, u)l + co@, $s)) + g(s, 0)) ds 
> 

x dmo(to, x0, t, x)(u), 

where 

g(s, u) := f 1, r,,t,+l)(~)d(ti, u(ti), ti+l, v(tt+l)) 
i=O 

and 1, denotes the indicator function of a set A. 

ProoJ: We know from [20] that 

~l~c-cCgiC&ti~ Xi> ti+1, Xi,I)l 

(I (C - CO)(SS U(S)) - dil + di) ds 
> 

Xdmc,(ti, Xi, ti+ I, X~+I), 

with d, := d(ti, xi, ti+ 1, x. r+ r). Consequently, applying Lemma 4.1 in the form (4.4), 
we obtain 

w7l =qI~ll~xi)3 =Ic,(to, x0, 6 x) 
n--l 

X 
j { 

(Rd~” ivo pco(tj, Xi, ti+ 1, xi+ ‘lt’ x) 

x fi jexp 
i=O (, 

~~~“(l(c-~~)(~,u(~))--d~~+d~)ds 
> 

X dm,&ti, Xi, ti+ 12 Xi+ I )(u)) dx, . +. dx, 

= I,,(t,, x0, t, xl (ICC - co)(s, U(S)) - gb, u)l 

+ g(s, u)) ds 
> 

dm,,(to, x0, t, x)(u). 



348 WOLFGANG WAGNER 

Substituting the measure m,, by m, according to (2.1), we obtain the desired, 
expression. 

It can be shown that ,?15’*)1 5 ,!J5(‘)1. Thus, Proposition 5.1 also provides 
sufficient conditions for the estimator (3.2), (3.5~(3.7), (3.9) to be unbiased. 

In the following, we suppose d= 0. Given any c0 E K, we consider the class KC, of 
functions c E K, for which the estimator (3.2), (3.5)-(3.8) is unbiased. Theorem 2.3 
and Proposition 5.1 imply 

We show, how the remaining parameter co influences the class KO. 

PROPOSITION 5.2. The sets KC, have the following properties: 

(i) K,,cK,,,foranyc,,c,~Ksuchthatc,~c,; 

(ii) KC,, = KC,, for any co, c1 E K such that co - c1 is bounded; 

(iii) KC,, 3 {c E K: c - co is bounded from below}. 

ProoJ: (i) For CE KC, and any argument, we have the inequality Jc- cl( + 
clsIc-col+Ico-c,l+c,=Ic-c,l+c,. Consequently, Ilc-cri,+rl(tO,~o, t,x)= 
I,,- c,,l+co(tO, x0, t, xl, and CEK,. 

(ii) First we show that KCO+, c KCO, for any constant a. We have Ic - co/ + co 5 
lc--o-4 + lal +co+a-a, which implies Ilc-col+co~:Ilc-co-al+co+oexp((lal -a) 
(t - to)). Thus, the assertion follows for co, c such that co - c1 is constant. Consider i 
now co, cl such that -a s co - cr 5 a, a = const. With (i), we find KC, I> KC, + a = KC, 
and KC, c KC, _ L1 = KC,, which implies the assertion. 

(iii) Consider c E K such that c - co 2 a, a = const. We have I,,- cg _ a, + E0+ n = 
I, < cc and find c E KC,,+a = KC,, via (ii). 
This completes the proof. 

The set K, consists of all functions CE K satisfying the condition 
Ilc,(tO, x0, t, x) < cc known from [20]. Proposition 5.2 allows us to answer the 
question whether this condition on c can be weakened by an appropriate choice of 
the parameter co. 

The class K,,, co(s, y) = -a*y*/2, y E R, a > 0 (cf. Example 1 in Section 3), is 
really wider than K,, for sufficiently large t. It contains K. according to 
Proposition 5.2(i). The function co itself is in K,,, for arbitrary (to, x0, t, x). But co 
is not in K. for (to, x0, t, X) such that (t - to) > n/a (cf. the explicit formulas for 
Gaussian functional integrals in [ 171). According to Proposition 5.2(ii), the same is 
true for functions of the form co + c, where c is bounded. 

In the following, we consider the second moment of the estimator (3.2), 
(3.5)-(3.8). 
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PROPOSITION 5.3. Consider the estimator (3.2), (3.5)-(3.8). Then 

Q2 = hottO, x0, 4 x) [ exp (j’ (((c - co)(s, u(f)) 
r0 

x dmo(to, x0, t, x)(u), 

where the function g is defined as in Proposition 5.1. 

Proof We know from [20] that 

EtL1’co-dr,c0(tt7 xi, ti+19 xi+1)2 

= exp 
s (s 

fi+ 1 
(((c - co)h u(s)) - 412h + Y) ds 

fi > 

x dm,(t,, xi, ti+ 1, xi+ l)(uf- 

Proceeding analogously to the proof of Proposition 5.1, we obtain the assertion 

In particular, Proposition 5.3 shows that the estimator (X2), (3.5)-(3.8) has a 
finite second moment, if the parameter co is chosen in such a way that Ic - co/ is 
bounded. Thus, we found another useful property of the parameter co beside its 
influence on the estimator to be unbiased. The parameter co enables us to handle 
functional integrals (1.1) with a function c of the form “quadratic term plus 
bounded perturbation.” 

6. NUMERICAL EXAMPLES 

First, we consider the example of the harmonic oscillator 

c(s, y) = -0.5 y2, y E R. (6.1 f 

TABLE I 

Example 6.2 and One-Step Estimators 

t Confidence intervals 1 Example 6.1 

3.0 0.616 +/- 0.008 0.3 0.547 
0.617 +/- 0.006 

4.0 0.452 +I- 0.007 0.4 0.383 
0.454 +/- 0.005 

5.0 0.322 +/- 0.006 0.5 0,260 
0.324 +/- 0.004 
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TABLE II 

Example 6.2 with Z= 3.0 and Chorin’s Estimator 

n N Confidence intervals 

3 4000 0.665 i-l-- 0.011 
6 2000 0.636 +/- 0.014 

12 1000 0.618 +/- 0.019 

The choice c0 = c leads to an exact estimator q, since the inner functional integrals 
equal one. This property of our scheme to provide exact estimators for quadratic 
functions c is analogous to the corresponding property of quadrature formulas to 
be exact for certain polynomials. 

As a second example, we consider the perturbed harmonic oscillator 

c(s, y) = -0.5~~ + 0.1 sinlyl, yeR, tO=O,xo=O,x=O. (6.2) 

The results obtained by means of one-step estimators with the parameter 
cO(s, y) = -0.5~~ are shown in Table I. The parameter y is chosen to be 0.1. The 
number of independent samples is N = 5000. The empirical means are calculated 
simultaneously for the estimators (3.2), (3.5)-(3.8) and (3.2), (3.5)-(3.7), (3.9) on 
the same trajectories. Confidence intervals are constructed with the confidence level 
0.01 (cf. [20] for details). The upper results in the column “confidence intervals” 
correspond to the estimator (3.8), the lower results to the estimator (3.9). The 
empirical mean length I is also given. The results for the unperturbed harmonic 
oscillator (6.1) are contained in the last column. 

Some results concerning the biased Chorin’s estimator (3.4), (3.5), and the 
example (6.2) with t = 3, are shown in Table II. 

TABLE III 

Example 6.3, Multi-step Estimators, and Chorin’s Estimator 

n N Confidence intervals I Confidence intervals 

1 5000 1.145 +/- 0.015 0.3 1.000 +/- 0.000 
1.145 +/- 0.012 

3 4000 1.140 +/- 0.026 2.3 1.112 +/- 0.002 
1.143 +/- 0.008 

6 2000 1.154 +/- 0.039 5.3 1.132 +/- 0.003 
1.144 +/- 0.009 

12 1000 1.163 +/- 0.055 11.3 1.142 +/- 0.004 
1.151 +/- 0.010 



UNBIASED MULTI-STEP ESTIMATORS 354 

Finally, we use the example 

c(s, y) = 0.1 sin(yl, PER, t,=O,t=3,x,=O,x=O, (6.3) 

to illustrate the relation between the biased Chorin’s estimator (3.4), (3.5) and the 
multi-step estimators (3.2) (3.5)-(3.9) (cf. Table III). The parameter y is 0.1 again. 

7. COMMENTS AND OUTLOOK 

Unbiased Monte Carlo algorithms for the numerical evaluation of finite-dimen- 
sional integrals are well-known (cf. [S] or any other monograph on Monte Carlo 
theory). A direct generalization of these methods to the case of functional integrals 

is impossible. The corresponding one-point estimator would be 

F(v) := exp (jr c(s, U(S)) &>, 
fo 

(7.2) 

depending on an infinite-dimensional object u, distributed according to m,. 
The construction of one-step estimators in [20] was a first attempt to establis 

a theory of unbiased estimators for infinite-dimensional integrals. Multi-stew 
estimators proposed in this paper are a further contribution to such a theory. 
The class of unbiased estimators has been extended considerably. The param- 
eters co, (t;), and P appear as additional degrees of freedom of the unbiase 
estimation scheme. The scheme is applicable under weaker conditions now (cf. 
I’roposition 5.2). 

The main problem to be considered in the future is the variance reduction 
problem. Its solution is only at the beginning. However, the introduction of the 
parameters co, (tJ, and P represents necessary advancement toward importance 
sampling in the infinite-dimensional space. 

The basic principle of the importance-sampling technique is (in terms of the 
“estimator” (7.2)) to generate the random object 2) according to a measure having 
a density D(v) with respect to m, and to use the estimator F(v)/D(v) instea 
(7.2). The density D is to be chosen similar to the functional F. 

Although we do not use the estimator (7.2), we are able to implement this 
principle within the unbiased estimation scheme, via the parameters co, (t?), and P. 

The parameter co, which corresponds to the measure mco, can be chosen (in t 
class of quadratic functions) in order to be similar to c. The effect can 
remarkable, as example (6.2) shows. This example could not be handled without 
the parameter co. 
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In this paper, we did not use the variance reduction procedure proposed in [20], 
which is based on an appropriate choice of the parameters q(t) and q$), according to 
their optimal forms. Simulation studies with one-step estimators (cf. [20]) showed 
that this procedure works very efficiently on relatively small time intervals. On 
larger time intervals, it turns out to be insufficient. 

Within the multi-step estimation scheme, the one-step estimators are used on 
smaller time intervals. They serve as correction terms for some biased estimators for 
finite-dimensional approximations to the functional integral. These correction terms 
cause an additional variance compared with the biased estimator (cf. example 
(6.3)). This additional variance could be reduced by means of techniques developed 
in [20]. 

On the other hand, variance reduction techniques for finite-dimensional integrals 
(cf. [ 141 concerning Chorin’s estimator) can be used via the parameters ( ti) and P 
within the unbiased estimation scheme now. Moreover, we eyen conjecture that it 
might be possible to adapt the principle of the Metropolis algorithm [15] to the 
unbiased estimation scheme via the parameter P. 
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