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A general class of unbiased Monte Carlo estimators for functional integrals is introduced.
This' class contains previously known. unbiased: estimators as well as some classical biased -
estimators improved with special correction terms. The new algorithm is applicable under
weaker conditions on the functional integral. Numerical results of simulation studies are
presented. The variance reduction problem in the infinite-dimensional space is considered.
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1. INTRODUCTION

Functional integration on the one hand (cf. [S5, 11,17]) and Monte Carlo
methods on the other hand (cf. [13, 16, 4]) play an increasing role in quantum and
statistical physics. Thus, the construction of effective Monte Carlo algorithms for
the evaluation of functional integrals is of considerable interest (cf. [18, 197).

The purpose of this paper is to introduce a rather general class of unbiased
estimators for certain functional integrals. This class contains the unbiased
estimators proposed in [20] as well as some classical biased estimators (cf. [3])
improved with special correction terms. The new algorithm is applicable under
weaker conditions on the functional integrals.

We consider functional integrals of the form

Lo, xo, 1, X) = Eexp (f (s, w(s)) ds), (1.1)

where w is the d-dimensional Brownian bridge from x, at the time ¢, into x at the
time ¢, and x,, x € R% The symbol E denotes the mathematical expectation.

The function c:[#,,t]x R*—> R is supposed to be such that the integral
functional of the Wiener trajectory

ft c(s, wis)) ds

is an a.s. finite random variable with a finite exponential moment (1.1).
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Functional integrals of this kind are important because of their connection with
Green’s function for certain partial differential equations (cf. the Feynman-Kac
formula). Various parameters of quantum-mechanical systems (like the lowest
energy level) can be evaluated numerically with the help of the functional integral
representation of Green’s function (cf. [6,10]).

Monte Carlo methods for the evaluation of functional integrals (1.1) have been
investigated in many papers (cf. the extensive reference list in [207). They can be
described as follows. First the functional of a continuous path

F(w):=exp <fr c(s, w(s)) ds>

0

is replaced by a functional # of a time-discrete trajectory w. The resulting error is
called the systematic error of the algorithm:

EF(w)= En(w)+ systematic error.

Then, the mathematical expectation Ey is evaluated by the empitical mean over
independent samples (w;) of w, generated by means of a random number generator:

N
En(w)=(1/N) Y, n(w,)+ statistical error.
j=1

j=

The random variable 5 is called an estimator for the functional integral (1.1). The
estimator depends on various parameters like the probability distribution of w.

Consequently, two main problems have to be considered in the theory of
stochastic numerical algorithms for functional integrals:

the approximation problem-—to estimate the systematic error in dependence
on the parameters;

the variance reduction problem—to reduce the statistical error, which depends
on the variance of the estimator, by an appropriate choice of the parameters.

An estimator is called unbiased if it is not connected with any systematic error,
ie., if En(w)= EF(w). Unbiased estimators are very convenient because of the
simple error analysis. The statistical error can be estimated by means of confidence
intervals during the process of computation.

In Section 2 we introduce the basic ideas, leading to the construction of the new
type of unbiased estimators, and formulate the main resuits. Section 3 contains
some examples illustrating the rich variety of multi-step estimators. The proof of the
theorems of Section 2 are collected in Section4. A more detailed analysis of
concrete estimators is performed in Section 5. Some nuinerical examples are given
in Section 6. Section 7 contains some reflections about the multi-step estimation
scheme from the point of view of importance sampling in the infinite-dimensional
space.
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2. MULTI-STEP ESTIMATORS; BASIC IDEAS AND RESULTS

The estimators to be introduced are based on the following three ideas:

— a measure substitution is performed in the functional integral (1.1},
following the idea of the importance sampling procedure known from the finite-
dimensional case (cf. the comments in Section 7);

—a mixed integration formula is derived for the transformed functional
integral, using an idea by Fosdick [9];

— estimators proposed in [207] are used to estimate the inner functional
integrals appearing in the mixed integration formula.

First we need some notations. Consider the set
T={(51, Y1, 52, Y2): 1o =5, <5251, ¥y, y,€R7},

where — oo <ty<t<oo. For any (s, ¥y, 53, y,)€7T, we introduce the measure
my(sy, ¥1, 82, ¥2) on the space of continuous vector functions {v: [s,, s,] — R?}
generated by the corresponding conditional Wiener process subject to the
conditions w(s;) =y, and w(s,) = y,.

Further we consider the set K of measurable functions c: [f,, t] x R - R such
that jjf c(s, v(s)) ds is measurable and a.s. finite with respect to the measure
mo(sla Yis 82, YZ)9 and Ic(sla Yis 52, y2) :=jexp(f§f C(S, U(S)) dS) dmo(su Yis 52, )’2)
(v) < oo, for any (s, ¥y, 8,5, y2)eT.

For any ce K, we introduce the measure m (s, y¢, 5., ¥») given by its Radon—
Nikodym derivative

dmc(sla Y1552, ¥2) K
(v)=€XP<
dmo(sy, 1, 525 ¥2) f

* (s, o5)) ds) Lis yiose )~ (1)

]
Sometimes we will use the notation

Lyclors v s )= [exp ([t 0) ) dmfor, 152, 00

s

(S1, 1585, y2)eT, for appropriate functions g Further, we denote

Ig,O(S17 Vi> 82, Y2) =i Ig(sh V1> 82, V2)-
The following theorem provides a natural interpretation of the measure m,.

THEOREM 2.1. The measure m s, ¥1, S,, ¥4) corresponds to a Markov process
with the transition density

pc(ub Zy, Uy, 22/s2a y2)

Ic(ula 215 Us, 22) Ic(u2’ Z25 82, y2)
Ic(ula 215825 y2)

s (22)

= polur, 21, Uy, 25/53, ¥3)
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where po(../s2, V,) denotes the transition density of the conditional Wiener process
corresponding 10 mo(sy, Y1, $2, Y2l (S1, Y1, 825 ¥2) €T, 8; Suy <uy <5y, 21, 7, € R

It can be shown by simple calculations that the processes corresponding
to the measures m(s;, ¥, Sy, V2)» (81, V1,52, ¥2) €T, are compatible in the
following sense. Consider (s, Vi, 52, V2), (815 Y1553, ¥2)€T, 5,<s;. Then the
msy, V1,82, ¥2)-process is equivalent to the conditional m (s, ¥, 51, ¥3)-process
under the condition that it is in y, at the time s,. Therefore, it is correct to speak
about the m -process without mentioning the index (s, ¥y, 8., ¥2) € T.

The second theorem plays the major role in the construction of the new class of
unbiased estimators.

THEOREM 2.2. Consider c,co € K, (4;): to < t; < - < t,,, =1 X,x5 € R,
X, .1 :=x. Then the following representation formula holds:

Ic(th X0 Z X) =Icc(t0’ X0 Z, X)

n—1

XL H pco(ti’ Xis ti+11xi+1/za x)

R ;g

n
X 1_[ Ic—co,co(tia xi’ ti+1’ xi+1)
i=0

X dx, - dx,.

Such representation theorems are called mixed integration formulas in the
literature (cf. [2, 91). The usual way to apply them to the construction of numerical
algorithms for the functional integral I.(ty, xg, ¢, x) is to approximate the inner
functional integrals (like 1., (¢, X;» ;4 1, X;;) in Theorem 2.2) and to estimate
the remaining finite-dimensional integral (cf. Example 2 in Section 3).

Instead of this, we use unbiased estimators from [20] for the inner functional
integrals I._ . .(f; X;, t;,1,%;,,) and combine them with an estimator for the
finite-dimensional integral over (R?)"”. We suppose the functional integral
L (sy, y1,52, y2)s (81, y1, 52, y2)€T, to be known explicitly (cf. Examplel in
Section 3). According to Theorem 2.1, the transition density p, of the process
generating the measure m, is also known explicitly. Consequently, the unbiased
estimators from [20] are applicable to functional integrals with respect to the
measure m,,.

Let (¢
that

(S, Y1552, ¥2))» (51, Y1, 85, ¥2)€ T, be a family of estimators such

C—cC),C)

Eﬁcfco,cg(sls Y152, y2)=1c—co,cg(sls Y1552, ,Vz)

The finite-dimensional integral over (R9)” is evaluated by a standard one-point-
estimator (cf, e.g., [87). Let the distribution of (x,, .., x,) be given by a density
P(x, .., x,) satisfying the condition P(xy,.., x,)>0, if TI'23 p.(ti X0 tii1s
x; .4/t x)>0.

581/79/2-7
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Now we define the estimator for the functional integral 1.(¢,, X, ¢, X) as

H?;ol ch(ti’ Xis b 1> Xiq 1/t X)
P(xy, .y x,)

’l = Ico(th an l, X)

X H 5c—c0,cg(tiaxi> ti+1:xi+1)’ (24)
i=0
where the estimators &._ . .(t;, X, t;11, X;, ) are supposed to be independent,
given the (x4, ..., X,).

The estimators &, . (%, X5 844, X;4;) are given on random sequences
(t;;, %), i=0,1,.,n j=0,1,.., 1, forming Markov chains with absorption. The
chains start at (¢, x,0) :=(¢;, x;), i=0, 1, ., n. Their distribution parameters are
the probability of absorption

3§'(s, »),
and the transition density
qs1, Y1552, ¥2)s
(S, y)’ (Sla yl)a (525 yZ)e [tia ti+1) de‘

The random lengths of the chains are denoted by /,, i=0, 1, ..., n. We refer to [20]
for more details (cf. also Example 3 in Section 3).

The estimator (2.4) depends on the parameters ¢y, (f;), appearing in the mixed
integration formula (2.3), on the concrete form of the estimators £, and on P,
(g, ¢'), defining the probability distribution of the discrete trajectory
o= ((x;), (¢; ;, x; ;). Therefore, we use the term “the class of estimators (2.4)” as
well as the term “the estimator (2.4).”

The main property of the estimator (2.4) is the subject of the following theorem.

THEOREM 2.3. Let the estimator n be given in the form (2.4). The condition
Elnl < (2.5)
is necessary and sufficient for n to be unbiased, i.e.,
En=1(ty, xq, t, X).

A more detailed investigation of the estimator (2.4) will be performed in
Section 3.
3. EXAMPLES

We consider some special cases (concrete values of the parameters) in order to
demonstrate the rich variety of the class of estimators (2.4).
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ExaMpPLE 1. We suppose n=0. The estimator (2.4) takes the form

r’:Ico(tO’ X0, A X) éc—co,co(t()axoa tv X). {31)

Thus (for ¢;=0), the whole variety of estimators proposed in [20] is contained in
the class of multi-step estimators (2.4). We call the estimators of the form (3.1}
one-step estimators. They have one more degree of freedom, compared with the
estimators from [207]. This is the function ¢;.

The values 1, (s, ¥1, 52, ¥2), (81, ¥1, 52, ¥2) € T, are known explicitly in the case
of quadratic ¢, (cf. [17]), where the corresponding m,-processes are Gaussian. We
give the explicit formulas for the case

cols, y)= —a**/2, yeR, a>0.

The transition density p (s, ¥, $2, ¥2/t, x) is Gaussian with mean

sinh(a(t—s,)) sinh(a(s, — 51))
Y Sinh(a(i—s,)) | sinh(a(z—s,))

and variance

sinh(a(s, — s,)) sinh(a(t —s,))
sinh(a(z — s5,))

We call the corresponding process the harmonic oscillator process because of its
relation to the quantum-mechanical harmonic oscillator having the potential ¢,.
A similar example was considered in [7], where a special estimator of the type
(3.1) also was used for the numerical solution of Schrédinger’s equation.

Before turning to the next example, we remember a “shift procedure,” which was
used in [207 for the purpose of variance reduction. It is based on the following
simple transformation of the functional integrals,

I eoltin Xis ti 15 X4 1)
=exp(dilt; s 1 — 1)) X ey a ol lis Xis L 15 X 1)s

where d,:=d(t;, x;, t;. 1, X;41), 1=0,1,..,n, and d is an appropriate measurable
function. Replacing &, . o(ts X5 i1, %i01) by exp(dft, 1 —1;)) % Eovodal B Xis
fii1» X4 1), the estimator (2.4) can be modified,

Too Peollin Xis tin 15 X4 1/8, X)
P(xy, .r x,)

’7 = Ico(th xO’ t, x)

< exp ( 5 d,-(z,-H—t,-)) [T 6 amaltn s trensxiny) (32)
i=0

i=0
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ExaMPLE 2. We suppose the parameter d to be

di=((c—co)tis x)+ (c—coltiv 1> Xi11))/2 (3.3)

i=0,1,..,n Then, the estimator (3.2) is closely related to well-known . biased
estimators based on Chorin’s approximation formula (cf. [3, 14, 1, 12]). Suppose
¢o=0. Then, Chorin’s estimators are obtained from (3.2) by omitting the product

n
i=02

_ :'1=_01 Poltis Xiy tip1s Xig 1/t X)
P(xq, ..., x,)

coxp (3 eltn 1)+ elty o it —0)2) (34)

In Chorin’s approximation formula, the terms exp((c(¢;, x;) + c(#;, 1, x;,1))/2) are
used as deterministic approximations of the inner functional integrals

tig
Tttt )= [ oxp ' et 0000 )
4
X dmo(tia xi9 ti+17 xi—l—l)(v)’
i=0, 1, .., n. Thus, the multi-step estimator (3.2), with the parameter d given in

(3.3), can be interpreted as Chorin’s estimator with a correction term that makes it
unbiased.

ExampLE 3. Finally, we consider a special choice of the distribution parameters
P, (¢§, ¢), and two concrete inner estimators & (cf. [20]). We use the parameters

n—1

P(XI, it xn)= H pco(tia Xi ti+1, Xit l/ta X), (35)
i=0

q(()i)(s5 y)zexp(_y(ti+1~s))s (Sa J’)e [tia ti+1) X Rd’ (36)

q(i)(sn V1,82, )’2)=Pco(-5'1a Vis 52, Yaltiv1s Xig1)

X exp(y(#;4 1 —52))/(exp(y(£;4 1 —51)) — 1),

(3.7)
(Slz yl)e [ti: ti+l)de5
(SZ, yZ)E(Slati+I)den y>0
The estimators are
EO ool X5 Lie 15 X0 (2555 X5 5))
Ui
=exp(y(t;1— )y [T ((e— ot ;5 x, ;) —d)) (3.8)

j=1
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and
¢@ co—dneoBis Xis L 1s Xiw 1) (275 X1 7))

i k
=1+ Z exp(y(t, . — 1)) Vﬁk H ({e~ co )t s xi,j)" d;). (3.9}
k=1 j=1

The trajectory o =((x,), (#;;, x;,)) defined by the parameters (3.5)-(3.7} is
closely connected with the m -process. First, the random moments (¢, ;) are to be
generated with a distribution that can easily be obtained from (3.6), (3.7). Then, the
random points (x;), (x, ;) are to be chosen independently of (z, ;) as the values of a
trajectory of the m,-process at the moments (¢;) and (¢, ;), respectively.

Thus, the parameters (3.5}-(3.7) allow a rather clear interpretation of various
classes of estimators. Biased estimators (cf. (3.4)) use the trajectory of the basic
process at some deterministic moments (¢;). The systematic error can be avoided by
using the trajectory of the basic process at random moments. The one-step
estimators use this trajectory exclusively at random moments, the multi-step
estimators, at some deterministic and some random moments.

4. PROOFS OF THE THEOREMS OF SECTION 2
First we prove a useful technical assertion.

LemMa 4.1. Consider ce K, (sy, 1,82, Yo)ET, and (u,), i=0,1,.,n+1, such
that s, =1ug<u; < - <u,,,:=s3,. Let fand g be measurable functions such that
the integral

Ji=[ £(o(wy), . 0(w,)) exp ( [ g5, 0(5), v, s 1)) ds>

S1
Xdm(sy, y1, $25 Y2 )(v)
exists. Then the equality

n—1

J= .((Rd)nf(zl’ ey Zn) n pO(uia ZisUiq 1 Zi+1/S29 y2)
i=0

n
x n Ty 2oy iy, 2o ) (s, Y15 82, y2) 71

i=0

- " a5, 0(s), 21y o 20) d
xigojexp (L g(s, v(8), 2y, s Z,) s)

i
xdmu;, z;, u; 41,2, ) 0)dz, - dz,,

holds with z,:=y, and z,,, | '= y,.
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Proof. First we substitute the measure m, by the measure m, according to (2.1):

T=1{s1s y1553 2) 7 | f0001), o 0(01))

X eXp (F (g(s, v(s), v(uy), ..., 0(1,}) + (s, (5))) ds)

X dmo(Sy, Vi, 2, Y2)(0).

Now we write the expectation with respect to the Wiener process as an integral
over the conditional expectations with the condition w(u,)=2z,, .., w(u,)=z,. It
follows that

n—1

J=1.(51, Y1, $25 J’z)_1 j(Rd)n H Po(Uss Zis Uiy 15 Zi 4 1/S2y Y2) F(Z1s ey 2,)
i=0

<r{ T exp ([ ot w61 7102+ wio)) )

i=0 i

w(u)=2z, .., wu,)= z,,} dz,..dz,.

The factors inside the conditional expectation are independent. Consequently, we
obtain

J=IC(S1, Y182, J’z)_l J‘(Rd)n

{f(zl, s Zyy)

n—1

X H PolUys Zis Uiy 15 2y 1/825 V2)

i=0

X lf[ fexp (f:.iﬂ (8(s, v(s), 215 s 2,) + €[5, 0(5))) ds)

el 110200, iy
Substituting the measures mqg(u;, z;, 4, 1> 2, 1), =0, 1, ..., n, by the corresponding
m-measures, one obtains the assertion of the lemma.
Now we are able to prove Theorem 2.1.

Proof of Theorem2.1. First we prove that p. satisfies the conditions of a
Markov transition density. Lemma 4.1 with (f; g, ¢, n)=(1,¢,0, 1) provides the
equality

1.(51, Y15 52 J’2)=Ld1’0(5'1a V15 Uy 21/825 ¥2)

XL (81, yi, 1y, 20) L (uy, 2y, 85, ¥2) dzy, (4.1)
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which implies the normalization condition for p.../s,, y,). To prove the
Chapman-Kolmogorov property we consider s; S u, <u, <us<S$,, Z;, 23 € R% and
write down p(u,, z;, U3, Z3/5,, y,) according to its definition (2.2). Applying
formula (4.1) to I.(uy, z,, uz, z;) we obtain

I (us, z3, 55, y5)
Ic(ula Z1, 529 y2)

pc(”h Zy, Us, Z3/S25 y2)=l’o(”1a Zy, Us, Z3/s27 y2)
XJ dpo(ula Zy, Uy, ZZ/uS: 23) Ic(ula Zys Uy, ZZ)
R
X I (uy, 25, U3, 23) dz,.

Now we use the property of conditional Markov transition densities

Polty, 21, Uy, Z5/85, ¥2) Polliz, 22, Us, Z3/85, V2) (42)
poluy, 2y, Uz, 23/55, V)

Poluy, 2y, Uy, Zofus, z3) =
Finally we obtain the desired equality:

Ic(u3: 23,82, ¥ )
pc(u1’215u3>z3/s29 y2)= : 2
I(uy, 24, 5,5, 2)

X Ld Poltty, 21, Uy, 22/55, ¥2) Polta, 22, Us, 23/55, V2)

XI(uy, 2y, Uy, 25) Ly, 25, U3, 23) dz,
=f dpc(ub 2y, Ugy Z2/8y, Vo) Py, 22, Us, 25/5,, ¥o) dz,.
R

It remains to show that p_(.../s., ¥,) generates the finite-dimensional distributions
of the m (s, ¥y, 52, y;)-process. We consider (u,): s, =:uy<u; < ' <, =3,
and a bounded measurable function f. According to Lemma 4.1, we find

[ 70w)), < 00a0,)) dimlsy, 31, 52, 22)(0)

n—1

= .[(Rd)nf(zl’ s Zn) H PolMs, Zis Uiy, Zi /82, ¥2)

i=0

x l—l L(us 2t 15 25 )/1(81, ¥, 82, Vo) dzy oo dz,

i=0
n—1

=J(Rd)nf(21’ ey Zn) 1—[ pc(uia ZisUip s Z[+1/S2, yz) le . dzn.

i=0

Thus, Theorem 2.1 is established.
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Now we prove the mixed integration formula.

Proof of Theorem 2.2. Performing the transformation from the measure m, to
the measure m_,, we obtain

cg?

Ic(Sb Vi, 82, J’z)zlc—co,co(su Y1582, y2) Ico(sla Y1, 82, yz)a (51, Y1, 52, y2)e T.
(4.3)

Using (2.2), the assertion of Lemma 4.1 can be written in the form

J 700, o)) 59 ([ 06 661 0001 o050 ) i, 310532 7200

§1

n—1
=f( 5 {f(ZI, ceey Zn) H Pc(ui, Zj, ui+1azi+1/52, y2)
R Yyl

i=0

x [ Jexp <ri+l g(s, v(s), 2y, ver Zp,) ds)
i=0 ui
x@u%awwu%nw%ﬂf~ﬂw (44)

In particular, with (f, g, ¢) = (1, ¢ — ¢y, ¢g), we obtain the formula

n—1

Ic—co,co(sla Vi, 82, J’2)=£Rd) l—[ pco(uia Zis Uiy Zi+1/32’ J’2)
" i=0

n

Xl—I Ic—co,co(uiaZh ui+lazi+1)dzl'“dzn' (45)

i=0

The assertion of Theorem 2.2 follows immediately from (4.3) and (4.5).

Fosdick’s mixed integration formula [9] is obtained from Theorem 2.2 for ¢, =0.
It remains to prove Theorem 2.3.

Proof of Theorem2.3. Condition (2.5) is necessary and sufficient for the
existence of a finite mathematical expectation Ex. Suppose (2.5) to be fulfilied.
Using simple properties of the conditional expectation, we obtain

Eﬂ =EE{71/(X1)} = IC()(to’ xO’ t: )C)
n—1

XJ‘( I—[ pco(ti: Xis ti+1’xi+1/ta )C)

Rd)n i=0

X l_[ E{5c~-c0,co(ti: Xisbiv1s xi+1)/(xi)} dxy - dx,.

i=0

The assertion follows immediately from Theorem 2.2.
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5. FURTHER RESULTS ON MULTI-STEP ESTIMATORS

Theorem 2.3 gives a general answer to the approximation problem. The multi-
step estimator (2.4) is unbiased, if its mathematical expectation is finite {(condition
(2.5)). Now, we use the concrete form (3.2), (3.5)-(3.8) of the multi-step estimator
in order to specify the condition (2.5). We look for a more explicit form of this
condition in terms of the parameters of the estimator.

ProrosITION 5.1, Consider the estimator v in the form (3.2), (3.5)-(3.8). Then

it = fexp ([ (1te= cols 15)) = gt 0+ cul. v(5) + (s, )
x dmg(ty, Xq, 1, X} V),

where

gls,v) = Z Linnen(8) dlts v(t), b4 g, 0(t 1))
i=0

i-
and 1, denotes the indicator function of a set A.

Proof. We know from [20] that
E]éc—co,co(tis X b 1> Xip 1)l
tit1
=exp ([ tte=calts o050~ + ) )
Xdm,(t;, X5 81, Xip 1)

with d, :=d(t;, x;, t,, |, X, 1). Consequently, applying Lemma 4.1 in the form (4.4),
we obtain

Eln| = EE{|nl/(x;)} = I(to, Xo, 1, X)

n—1
Xf {H pco(ti’xi: Liv1s Xip 1/t X)
(Réy"

i=0

n

x [ Jexp Uml (e —cols, v(8))—d| +4d)) ds)
i=0 i
X dmco(ti, Xis ti+1’ Xiq 1)(0)} dxl . dxn

= Tt %o, 13) [ exp ([ (e o). v6s) gt )

+ g(s, v)) ds) dm, (o, Xg, t, X)(v).



348 WOLFGANG WAGNER

Substituting the measure m, by m, according to (2.1), we obtain the desired
expression.

It can be shown that E|é@| < E|EW)|. Thus, Proposition 5.1 also provides
sufficient conditions for the estimator (3.2), (3.5)-(3.7), (3.9) to be unbiased.

In the following, we suppose d=0. Given any ¢, € K, we consider the class K, of
functions ¢ € K, for which the estimator (3.2), (3.5)-(3.8) is unbiased. Theorem 2.3
and Proposition 5.1 imply

KCO= {CEK: [Ic—col+co(t0: x()a t9 X)< (D}

We show, how the remaining parameter c, influences the class K.

PROPOSITION 5.2. The sets K, have the following properties:

(i) K,cK,, for any c,, c; € K such that coZcy;
(i) K,=K,, for any cy, c, €K such that c,— c, is bounded,
(ili) K,> {ceK:c—cq, is bounded from below}.

Proof. (i) For ceK, and any argument, we have the inequality |c—c,|+
ciSle—col +leo—cyl +ey=lc—col +¢o. Consequently, I, ., (fo, X0, 1, x)=
Io_ o+ ooltos X0, £ X), and ce K.

(ii) First we show that K, , ,< K, for any constant a. We have [c —co| + ¢ =
lc —co—al + lal + co+a—a, which implies 1, ;. = I,L,_c(,_.aI +eo+a€XP((lal - a)
(t—1,)). Thus, the assertion follows for ¢,, ¢, such that ¢, — ¢, is constant. Consider
now ¢, ¢, such that —a<c¢y—c; <a, a=const. With (i), we find K, = K, , ,= K,

and K, <K, _,=K,,, which implies the assertion.

(iii) Consider ce K such that c—co2a, a=const. We have I\, . _,140+0=
I.<o and find ce K, , ,=K,,, via (ii).
This completes the proof.

1—a

The set K, consists of all functions ceK satisfying the condition
I;,(20, X0, 1, x) < oo known from [20]. Proposition 5.2 allows us to answer the
question whether this condition on ¢ can be weakened by an appropriate choice of
the parameter ¢,.

The class K, co(s, y)= —a*y?*/2, yeR, a>0 (cf. Example 1 in Section 3), is
really wider than K,, for sufficiently large z It contains K, according to
Proposition 5.2(i). The function ¢, itself is in K, for arbitrary (z,, x,, ¢, x). But ¢,
is not in K, for (¢, xy, ¢, x) such that (¢t—¢,)>n/a (cf. the explicit formulas for
Gaussian functional integrals in [17]). According to Proposition 5.2(ii), the same is
true for functions of the form ¢, + ¢, where ¢ is bounded.

In the following, we consider the second moment of the estimator (3.2),
(3.5)—(3.8). ' :
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ProposiTioN 5.3.  Consider the estimator (3.2), (3.5)-(3.8). Then

B =t 50, 1.%) x| {(le=colts v65)

- 5(5.0)1+ cals 2(5) 47+ 2200, 0)} )
x dmy(ty, Xq, t, x)(),
where the function g is defined as in Proposition 5.1.
Proof. We know from [20] that
Efﬁllco_di, co(tia Xis Liv 1o Xig )2

=fewe (]

+1
(e s (5D = d -+ )
X dmco(tio xia ti+19 xi+ 1)(0)'
Proceeding analogously to the proof of Proposition 5.1, we obtain the assertion.

In particular, Proposition 5.3 shows that the estimator (3.2), (3.5)(3.8) has a
finite second moment, if the parameter ¢, is chosen in such a way that jc—cg| is
bounded. Thus, we found another useful property of the parameter ¢, beside its
influence on the estimator to be unbiased. The parameter ¢, ¢nables us to handle
functional integrals (1.1) with a function ¢ of the form “quadratic term plus
bounded perturbation.”

6. NUMERICAL EXAMPLES
First, we consider the example of the harmonic oscillator

(s, y)=—0512 yeR. (6.1)

TABLE I
Example 6.2 and One-Step Estimators

t Confidence intervals l Example 6.1
3.0 0.616 +/— 0.008 0.3 0.547
0.617 +/— 0.006
40 0452 +/— 0.007 0.4 0.383
0.454 +/- 0.005
50 0.322 +/— 0.006 0.5 0,260

0.324 +/— 0.004




350 WOLFGANG WAGNER

TABLEII

Example 6.2 with = 3.0 and Chorin’s Estimator

n N Confidence intervals
3 4000 0.665 +/— 0.011
6 2000 0.636 +/— 0.014

12 1000 0.618 +/— 0.019

The choice ¢, = ¢ leads to an exact estimator #, since the inner functional integrals
equal one. This property of our scheme to provide exact estimators for quadratic
functions ¢ is analogous to the corresponding property of quadrature formulas to
be exact for certain polynomials.

As a second example, we consider the perturbed harmonic oscillator

c(s, y)= —0.5y%> + 0.1 sin|y], yeR, t,=0, xo=0, x=0. (6.2)

The results obtained by means of one-step estimators with the parameter
cols, y)= —0.5y* are shown in Table I. The parameter y is chosen to be 0.1. The
number of independent samples is N =5000. The empirical means are calculated
simultaneously for the estimators (3.2), (3.5)-(3.8) and (3.2), (3.5}-(3.7), (3.9) on
the same trajectories. Confidence intervals are constructed with the confidence level
0.01 (cf. [20] for details). The upper results in the column “confidence intervals”
correspond to the estimator (3.8), the lower results to the estimator (3.9). The
empirical mean length / is also given. The results for the unperturbed harmonic
oscillator (6.1) are contained in the last column.

Some results concerning the biased Chorin’s estimator (3.4), (3.5), and the
example (6.2) with ¢ =3, are shown in Table IL

TABLE III

Example 6.3, Multi-step Estimators, and Chorin’s Estimator

n N Confidence intervals 1 Confidence intervals
1 5000 1.145 +/— 0.015 0.3 1.000 +/— 0.000
1.145 +/— 0.012
3 4000 1.140 +/— 0.026 2.3 1.112 +/— 0.002
1.143 +/— 0.008 ‘
6 2000 1.154 +/— 0.039 5.3 1.132 +/— 0.003
1.144 +/— 0.009
12 1000 - 1.163 +/— 0.055 11.3 1.142 +/— 0.004

1.151 +/— 0.010
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Finally, we use the example
c(s, y)=0.1 sin] y|, VyER, t;=0,1=3,x,=0,x=0, (6.3)

to illustrate the relation between the biased Chorin’s estimator (3.4), (3.5) and the
multi-step estimators (3.2) (3.5)-(3.9) (cf. Table III). The parameter y is 0.1 again.

7. COMMENTS AND OUTLGCOK

Unbiased Monte Carlo algorithms for the numerical evaluation of finite-dimen-
sional integrals are well-known (cf. [8] or any other monograph on Monte Carlo
theory). A direct generalization of these methods to the case of functional integrals

1(to, Xg, t, X) = f exp (J.t c(s, v(s)) ds> dmy(ty, Xg, £, X)) (7.1)

4]

is impossible. The corresponding one-point estimator would be
F(v) :=exp < f (s, v(s)) ds), (72)
4]

depending on an infinite-dimensional object v, distributed according to m,.

The construction of one-step estimators in [20] was a first attempt to establish
a theory of unbiased estimators for infinite-dimensional integrals. Multi-step
estimators proposed in this paper are a further contribution to such a theory.
The class of unbiased estimators has been extended considerably. The param-
gters ¢y, (¢;), and P appear as additional degrees of freedom of the unbiased
estimation scheme. The scheme is applicable under weaker conditions now {(cf
Proposition 5.2).

The main problem to be considered in the future is the variance reduction
problem. Its solution is only at the beginning. However, the introduction of the
parameters ¢y, (¢;), and P represents necessary advancement toward importance
sampling in the infinite-dimensional space.

The basic principle of the importance-sampling technique is (in terms of the
“estimator” (7.2)) to generate the random object v according to a measure having
a density D(v) with respect to mgy and to use the estimator F{v)/D(v) instead of
{7.2). The density D is to be chosen similar to the functional F.

Although we do not use the estimator (7.2), we are able to implement this
principle within the unbiased estimation scheme, via the parameters ¢q, (¢;), and P.

The parameter ¢, which corresponds to the measure m,, can be chosen (int the
class of quadratic functions) in order to be similar to ¢. The effect can be
remarkable, as example (6.2) shows. This example could not be handled without
the parameter c,.
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In this paper, we did not use the variance reduction procedure proposed in [20],
which is based on an appropriate choice of the parameters ¢ and g§, according to
their optimal forms. Simulation studies with one-step estimators (cf. [20]) showed
that this procedure works very efficiently on relatively small time intervals. On
larger time intervals, it turns out to be insufficient.

Within the multi-step estimation scheme, the one-step estimators are used on
smaller time intervals. They serve as correction terms for some biased estimators for
finite-dimensional approximations to the functional integral. These correction terms
cause an additional variance compared with the biased estimator (cf. example
(6.3)). This additional variance could be reduced by means of techniques developed
in [20].

On the other hand, variance reduction techniques for finite-dimensional integrals
(cf. [14] concerning Chorin’s estimator) can be used via the parameters (¢;) and P
within the unbiased estimation scheme now. Moreover, we even conjecture that it
might be possible to adapt the principle of the Metropolis algorithm [15] to the
unbiased estimation scheme via the parameter P.
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